
a

PHYSICAL REVIEW E DECEMBER 1999VOLUME 60, NUMBER 6
Escape over a fluctuating barrier with additive and multiplicative noise
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The mean first passage time~MFPT! over the fluctuating potential barrier is investigated in the presence of
additive and multiplicative noises. It is shown that the MFPT over the fluctuating potential barrier displays a
resonant activation~RA!. The effect of the additive and multiplicative noises and the correlation between them
on the RA is that the additive and multiplicative noises can weaken the RA; but the correlation between them
can enhance it. The susceptibility of the RA to the multiplicative noise is far larger than that to the additive
one. In addition, we find that the transition rate~i.e., the inverse of the MFPT! over the fluctuating potential
barrier can be suppressed by the positive correlation and show a minimum as the function of the noises’
strengths.@S1063-651X~99!04912-0#

PACS number~s!: 05.40.2a, 02.50.2r, 82.20.Mj
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I. INTRODUCTION

Recently the conventional problems of the escape over
fluctuating potential barrier have attracted a great dea
attention@1–13#. It was shown that the mean first passa
time ~MFPT! of a particle driven by additive noises over
fluctuating potential barrier exhibits a minimum as a functi
of the flipping rate of the fluctuating potential barrier@1–12#
~or the transition rate of the dichotomous noise@13#!. This
phenomenon is called ‘‘resonant activation,’’ and was ide
tified by Doering and Gadoua@1# and further studied by a
number of other authors@2–13#.

Earlier studies of activation of MFPT over fluctuating p
tentials were restricted to limiting cases, i.e., slow@14# or
fast @14,15# barrier fluctuations, or small fluctuations@16#.
Owing to using approximate treatments in Refs.@14–16#, the
resonant activation cannot be observed. Recently in R
@1–13#, the authors reported results concerning the esc
time ~i.e., MFPT! over a fluctuating potential in the absen
of approximate treatments as in Refs.@14–16#. They re-
vealed the resonant activation~RA! of MFPT over the fluc-
tuating potential barrier.

However, all of the above work for the RA of the MFP
over a fluctuating potential barrier has concentrated on
case where the fluctuating potential barrier is driven by
ditive noise. One unavoidably wants to ask the question,
if the fluctuating potential barrier is driven by additive an
multiplicative noises simultaneously, how is the situation?
addition, in recent years it has been discovered that in
tems driven by both additive and multiplicative noises, t
two noises can be correlated@17–19#, and the correlation is
able to change the steady properties of the systems gr
@20–26#. Nevertheless, how the correlation between addit
and multiplicative noises alters the activation process is
an interesting and unexposed problem. In this paper we
study the escape time~i.e., MFPT! over the fluctuating po-
tential barrier in the presence of additive and multiplicat
noises~between which there is correlation!. Here it must be
stressed that the multiplicative noise in this paper is differ
PRE 601063-651X/99/60~6!/6443~6!/$15.00
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from the one in Refs.@11,12#, etc., the multiplicative noise
which appeared in Refs.@11,12#, etc., is used to cause th
nonfluctuating potential barrier to fluctuate, while the mul
plicative noise in this paper is not used to do so.

II. MODEL AND ITS MASTER EQUATION

We consider a model whose Langevin equation is~in di-
mensionless form!

ẋ52
]

]x
U~x,t !2j~ t !

]

]x
U~x,t !1h~ t !, ~1!

wherej(t) ~the multiplicative noise! andh(t) ~the additive
noise! represent the Gaussian white noises. In general,
express the influence of the internal fluctuation on the sys
as additive noise and the effect of the external environme
fluctuation on the system as multiplicative noise@25–29#.
Here we assume that the external environmental fluctua
can influence the internal fluctuation. Because of the in
ence of the external environmental fluctuation on the inter
fluctuation, the additive and multiplicative noises are not
dependent~there is correlation between them!. The statistical
properties of j(t) and h(t) are ^j(t)&5^h(t)&50,
^j(t)j(t8)&52D2d(t2t8), ^h(t)h(t8)&52D1d(t2t8), and
^j(t)h(t8)&52lAD1D2d(t2t8) (21<l<1). U(x,t) is a
fluctuating potential barrier which satisfies

U~x,t !5U~x!1u~x,t !, ~2!

here the potential at anyx fluctuates symmetrically aroun
U(x). u(x,t) can take the values1Du(x) and2Du(x). In
Fig. 1 we plotU(x,t) in the case of dimensionless form. W
see that the forceF52]U(x,t)/]x now fluctuates between
F1

152E1 /a (E15E1DE) and F1
252E2 /a (E25E

2DE) on the interval~0,a), and betweenF2
15E1 /(12a)

andF1
25E2 /(12a) on the interval (a,1!. For convenience,
6443 © 1999 The American Physical Society
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below we takea51/2. The flipping rate of the fluctuating
potential barrier isg. Note that we haveDu(0)5Du(1)
50 andU(x,t)5U(x11,t).

Going from the Langevin equation~1! to the master equa
tions@23,25,30,31# for the probability density distribution we
find

]

]t S Pi
1~x,t !

Pi
2~x,t !

D 5S Gi
1 g

g Gi
2D S Pi

1~x,t !

Pi
2~x,t !

D , ~3!

where Gi
152g2Fi

1]x1@D1(12l2)1D2(Fi
1

1lAD1 /D2)2#]x
2 and Gi

252g2Fi
2]x1@D1(12l2)

1D2(Fi
21lAD1 /D2)2#]x

2 . i 51 represents the system o
the interval~0,1/2! andi 52 represents the system on~1/2,1!.
The quantitiesP1(x,t) and P2(x,t) are the probabilities a
any time t to find the barrier at the1 or 2 configuration,
respectively, and the particle at positionx. We start with the
particle at the bottom (x50). So the initial condition is
( i 51

2 Pi(x,0)5d(x). The boundary conditions for the reflec
ing (x50) and absorbing (x51/2) boundary, respectively
are]xPi(x,t)ux5050 andPi(x,t)ux51/250.

III. MEAN FIRST PASSAGE TIME

The equations of MFPT for Eqs.~3! are ~see the Appen-
dix!

$2g22E1]x1@D1~12l2!

1D2~22E11lAD1 /D2!2#]x
2%T11gT21150,

$2g22E2]x1@D1~12l2!

1D2~22E21lAD1 /D2!2#]x
2%T21gT11150. ~4!

Here the reflecting boundary condition is]xTi(0)50, and
the absorbing boundary condition isTi(1/2)50 (i 51,2).
The MFPT for a particle over the fluctuating barrier th
starts at the bottom (x50) is T5( i 51

2 Ti(0). Taking ]xTi

5si ( i 51,2), from Eq.~4! we can obtain

FIG. 1. The fluctuating potential barrierU(x,t) ~dashed!, which
has two configurations, i.e.,U(x)1Du(x) (1configuration! and
U(x)2Du(x) (2configuration!. The flipping rate of the fluctuat-
ing potential barrier between the two configurations isg. The solid
line corresponds toU(x).
t

]xS T1

s1

T2

s2

D 5S 0 1 0 0

g

A1

2E1

A1
2

g

A1
0

0 0 0 1

2
g

A2
0

g

A2

2E2

A2

D S T1

s1

T2

s2

D
1S 0

21/A1

0

21/A2

D , ~5!

where A15D1(12l2)1D2(22E11lAD1 /D2)2, and A2

5D1(12l2)1D2(22E21lAD1 /D2)2.

A. Case ofE11E250

In general, one cannot obtain the exact expression of
MFPT. However, in the case where the midpoint of the b
rier fluctuates between6E ~that is E11E250, andE15
2E25E) it is simple enough to summarize analyticall
Now the MFPT for a particle over a fluctuating potenti
barrier is, explicitly,

T5c1S 21
2E

g
r 12

A1

g
r 1

2D1c2S 21
2E

g
r 22

A1

g
r 2

2D12c4

1
2E

g
c31

2A1

4E21g~A11A2!
2

1

g
, ~6!

where r 1,25@2EA222EA1

6A(EA21EA1)21gA1A2(A11A2)#/(A1A2), c15(k2k38
2k3k28)/(k1k282k2k18), c25(2k1c12k3)/k2 , c352c1r 1

2c2r 2 , c452c1exp(r1)2c2 exp(r2)2c32g/@24E22g(A1

1A2)#, with k15(2Er1 /g2A1r 1
2/g)r 1 , k25(2Er2g

2A1r 2
2/g)r 2 , k354E/@24E22g(A11A2)#, k185

22Er1 /g1(2Er1 /g2A1r 1
2/g)exp(r1), k28522Er2 /g

1(2Er2 /g2A1r 2
2/g)exp(r2), and k3854E/@24E22g(A1

1A2)#22A1 /@24E22g(A11A2)#21/g.

B. Case ofE11E2Þ0

When E11E2Þ0 we cannot analytically get the exa
expression of the MFPT. Below we give the derivation of t
expression of the MFPT for numerical simulation. By n
merical simulation and analysis we can find that whenE1
1E2Þ0 the matrix of the homogeneous part aboutTi and
si ( i 51,2) in Eq. ~5! has three nonzero real independe
eigenvalues and a zero eigenvalue. The general solutio
Eq. ~5! (E11E2Þ0) are si5( j 51

3 Aj
( i )exp(ljx)1A4

(i)1A5
(i)x

and Ti5( j 51
3 Bj

( i )exp(ljx)1B4
(i)1B5

(i)x, where i 51,2, l j ( j
51,2,3! are the above-mentioned nonzero eigenvalues. S
stituting si and Ti into ]xTi5si we can obtain Bj

( i )

5Aj
( i )/l j , A5

( i )50, andB5
( i )5A4

( i ) . So we have

si5(
j 51

3

Aj
( i )exp~l j x!1A4

( i ) ,

~7!
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Ti5(
j 51

3 Aj
( i )

l j
exp~l j x!1B4

( i )1A4
( i )x.

Substituting Eq.~7! into Eq. ~5! and using the comparing
coefficient method, we obtainA4

( i )52/(E11E2), B4
( i )5B4

(1)

1Fi , and Aj
( i )5kj

( i )Aj
(1) ( i 51,2, and j 51,2,3! with F1

50, F25(E113E2)/g(E11E2), kj
(1)51, kj

(2)51
12E1l j /g2A1l j

2/g. Substituting Eq.~7! into the boundary
conditions Ti(1/2)50 and si(0)50 @note A4

( i )52/(E1

1E2), B4
( i )5B4

(1)1Fi , andAj
( i )5kj

( i )Aj
(1)], we can obtain a

linear algebraic system forAj
(1) ( j 51,2,3! andB4

(1) . From
the linear algebraic equations of this algebraic system we
deriveAj

(1) andB4
(1) . The MFPT for a particle over the fluc

tuating barrier is

T5(
i 51

2

Ti~0!5(
i 51

2

(
j 51

3 kj
( i )

l j
Aj

(1)12B4
(1)1(

i 51

2

Fi . ~8!

IV. CONCLUSION AND DISCUSSION

If we do not consider the multiplicative noise, Eq.~1!
becomes the model studied by Doering and Gadoua@1#, and
by Bier and Astumian@2#. Doering, Gadoua, Astumian, an
Bier have identified the RA of the MFPT for a particle ov
a fluctuating potential barrier for Eq.~1! in the absence of the
multiplicative noise. For the stochastic model~1!, we will
ask the following questions. Is there the RA of the MFPT
a particle over the fluctuating potential barrier? If there is
RA, how do the multiplicative noise and the correlation b
tween the additive and multiplicative noises affect it? In
der to settle the two questions, we plot Figs. 2 and 3 acc
ing to Eqs.~6! and~8!. In Figs. 2 and 3, the ln of the MFPT
versus the ln of the flipping rateg of the fluctuating potentia
barrier is plotted whenE11E250 andE11E2Þ0, respec-
tively. From these figures, one can find that there is a RA
the MFPT over the fluctuating potential barrier. A reason
this RA happening here is given below. The resonance
Figs. 2 and 3 occurs when the crossing takes place with
fluctuation potential barrier most likely inE5min(E1 ,E2)
configuration ~i.e., the ‘‘down’’ configuration!. Now the
MFPT has a local minimum for the fluctuation potential ba
rier transition rate on the order of the inverse of the tim
required to cross the fluctuation barrier with the fluctuat
potential barrier inE5min(E1 ,E2) configuration. In Figs. 2
and 3 we plot the corresponding points where the transi
time equals the MFPT over the fluctuating barrier with t
potential barrier inE5min(E1 ,E2) configuration. It is clear
that this accords with the above reason for the RA happen
in Figs. 2 and 3. Moreover, from these figures we can fi
that ~1! with increasing the noises’~additive noise and mul-
tiplicative noise! strength, the RA becomes more and mo
indistinct, i.e., the noises can weaken the RA;~2! with in-
crease of the correlation between the additive and multi
cative noises, the RA becomes more and more distinct,
the correlation can enhance the RA;~3! the susceptibility of
the RA to the multiplicative noise is far larger than that
the additive one.

In addition, we should investigate the activation of t
MFPT as the function of the noises’ strength for differe
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values of the correlation between the additive and multip
cative noises. We find that whenE11E2Þ0, the escape rate
~i.e., the reciprocal value of the MFPT! over the fluctuating
potential barrier can be suppressed by the positive corr
tion and show a minimum as the function of the two nois
strengths. This phenomenon has been reported by Madur
Hänggi, and Wio@32#, and Hai-xiang Fu, Li Cao, and Da-jin
Wu @33#. They named this phenomenon ‘‘giant suppress
of the activation rate’’~GS!. In Figs. 4~a! and 4~b! we plot
the ln of the MFPT versus the additive noise strength in
case ofE11E250 andE11E2Þ0, respectively. Figure 4~a!
shows that whenE11E250 the MFPT versus the additiv
noise strength is monotonous~no GS exists!; and the MFPT
becomes larger and larger with increasing the value of
correlation. Figure 4~b! shows that the MFPT curve for pos
tive correlation exhibits a peak value~i.e., GS exists!, while
cures for noncorrelation and negative correlation do not,
the larger the correlation strength is, the higher the p
becomes. Now the positive correlation becomes more s
pressive on the activation as the correlation grows, which
exactly the main conclusion of Refs.@32,33#. This is because
when the correlation is positive the instantaneous barrier
be lifted up ~the negative correlation case is just the co
trary!.

Below we consider the case when2j(t)]xU(x,t) in Eq.
~1! is 2j(t)]xŨ(x,t), in which Ũ(x,t) is a fluctuating bar-
rier with the flipping rateg̃. 2]xŨ(x,t) takes the values
2Ẽ1 and2Ẽ2 on the interval~0,1/2!, andẼ1 andẼ2 on the
interval ~1/2,1!. Then Eq.~1! becomes

ẋ52]xU~x,t !2j~ t !]xŨ~x,t !1h~ t !. ~9!

It is clear that Eq.~1! is a special case for Eq.~9! in the case
of g̃5g, Ẽ15E1 and Ẽ25E2. Further study shows that th
stochastic system with stochastic differential equation~9! has
the same phenomenon as shown in Figs. 2, 3, and 4@i.e., ~1!
there is RA for MFPT;~2! the additive and multiplicative
noises can weaken the RA, but the correlation between th
can enhance the RA;~3! the susceptibility of the RA to the
multiplicative noise is far larger than that to the additive on
~4! there is the GS#. In order to avoid unnecessary repetitio
we do not present the figures that are basically similar
Figs. 2, 3, and 4. In Ref.@13#, we study the escape time ove
a fluctuating barrier in the presence of a dichotomous no
and a Gaussian white noise. It is shown that the mean
passage time~MFPT! over the fluctuating barrier display
two RA’s. One is the RA of the MFPT as a function of th
flipping rate of the fluctuating potential barrier; the other
the RA of the MFPT as a function of the transition rate of t
dichotomous noise. As for the model~9!, there is only the
RA for the MFPT over the fluctuating potential barrier as
function of the flipping rateg of the fluctuating potential
barrier U(x,t), but there is not the RA for the MFPT ove
the fluctuating potential barrier as a function of the flippi
rateg̃ of the fluctuating barrierŨ(x,t). Here the flipping rate
g̃ of the fluctuating barrierŨ(x,t) has little influence on the
MFPT over the fluctuating potential barrier~see Fig. 5!. In
Fig. 5 we plot the ln of the MFPT versus the ln of the flip
ping rateg of the fluctuating potential barrier forE155,
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E257, Ẽ152Ẽ251, D150, andD251. The solid line cor-
reponds tog̃51000, and the dashed line tog̃510.

The relation of our work to the phenomenon of stochas
resonance should be considered. For the phenomenon o

FIG. 2. The ln of the MFPT versus the ln of the flipping rateg
of the fluctuating potential barrier whenE11E250. ~a! Corre-
sponds to the ln of the MFPT versus the ln ofg for different values
of the additive noise strengthD1 (D151, 3 and 5!, E152E2

54, D250, andl50; ~b! corresponds to that for different value
of the multiplicative noise strengthD2 (D250, 0.01, and 0.05!,
E152E254, D151, andl50; ~c! corresponds to that for differ
ent valuesl of the correlation between the additive and multiplic
tive noises (l520.9, 0, 0.1, and 0.5!, E152E254, D151, and
D250.01. The marked points~1!, ~2!, ~3!, and ~4! are the corre-
sponding points where the transition time equals the MFPT over
fluctuating barrier with the fluctuating potential barrier in th
‘‘down’’ configuration. In ~c!, a dashed line is plotted for the cas
wheng8 ~i.e., 1/T) equalsg.
c
to-

chastic resonance, we know that the response of a nonli
stochastic system to an inputting signal will be enhanced
the presence of noise and maximized for certain value of
noise’s strength. When the frequency of the inputting sig

e

FIG. 3. The ln of the MFPT versus the ln of the flipping rateg
of the fluctuating potential barrier whenE11E2Þ0. ~a! Corre-
sponds to the ln of the MFPT versus the ln ofg for different values
of the additive noise strengthD1 (D151, 1.5, and 2!, E155, E2

57, D250, andl50; ~b! corresponds to that for different value
of the multiplicative noise strengthD2 (D250, 0.002, and 0.004,
respectively!, E155, E257, D151, andl50; ~c! corresponds to
that for different valuesl of the correlation between the additiv
and multiplicative noises (l520.5, 0, 0.2, and 0.5!, E155, E2

57, D151, andD250.001. The marked points~1!, ~2!, ~3!, and
~4! are the corresponding points where the transition time equals
MFPT over the fluctuating barrier with the fluctuating potential b
rier in the ‘‘down’’ configuration.~c! A dashed line is plotted for
the case wheng8 ~i.e., 1/T) equalsg.
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is equal to the intrinsic frequency of the original stochas
system, a phenomenon of resonance will appear. In our
per, the RA and the GS have both the phenomenon of r
nance. First, let us analyze the phenomenon of reson
appearing in the RA. For small valuesg of the flipping rate
of the fluctuating potential barrier, a destructive influence
the asymmetry of the system will be played, so the ln(1T)
2 lng response curve will have positive slope. For largeg, a
central role will be played in producing cohorent motio
with increases asg increases, then the ln(1/T)2 lng curve
goes down. Thus, finally we can obtain a peaked ln(1T)
2 lng curve, at the peak of which a phenomenon of re
nance will happen. As for the phenomenon of resonance
pearing in the GS, the same analysis can be made as the
in the RA. The intrinsic frequency of the stochastic syst
studied by us isg851/T in which T is the MFPT over the
fluctuating potential barrier. Wheng8 is equal to the fre-
quency of the fluctuating potential barrier, i.e., the flippi
rateg, no resonance happens. In Figs. 2~c! and 3~c! we plot
the lines wheng8 is equal tog ~the dashed lines!.

Finally, it needs to be explained that, when we calcul

FIG. 4. The ln of the MFPT versus the additive noise stren
for different values ofl (l520.9, 0, 0.5, and 0.9! when E1

1E250 for E152E254, D250.01, andg50.1 @~a!#, and when
E11E2Þ0 for E155, E257, D250.01, andg510 @~b!#.
c
a-
o-
ce

n

-
p-
one

e

the MFPT for a particle over the fluctuating potential barr
@in the dimensionless form,E;5 ~see the Figs. 1, 2, and 3 i
the paper!#, we only calculate the MFPT fromx50 to x
51/2, which is because the MFPT fromx50 to x51/2 is
far larger than that fromx51/2 to x51. In this paper we
believe that the particle moves from left to right. When t
particle moves from right to left, since we takea51/2, the
MFPT over the fluctuating potential barrier is similar to th
one when the particle moves from left to right.~This means
that the MFPT over the fluctuating potential barrier is sy
metric with response to the direction of barrier crossing.!
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APPENDIX

The backward master equation for master~3! is @30,31#

]

]t S Qi
1~x,t !

Qi
2~x,t !

D 5S Ḡi
1 g

g Ḡi
2D S Pi

1~x,t !

Pi
2~x,t !

D , ~A1!

where Ḡi
152g1Fi

1]x1@D1(12l2)1D2(Fi
1

1lAD1 /D2)2#]x
2 and Ḡi

252g1Fi
2]x1@D1(12l2)

1D2(Fi
21lAD1 /D2)2#]x

2 . i 51 represents the system o
the interval~0,1/2! andi 52 represents the system on~1/2,1!.

The MFPT is defined as@30#

T1~x!52E
0

`

t] tQ1
1~x,t !dt5E

0

`

Q1
1~x,t !dt,

h

FIG. 5. The ln of the MFPT versus the ln of the flipping rate

the fluctuating potential barrier for model~9!. E155, E257, Ẽ15

2Ẽ251, D150, and D251. g̃51000 ~solid! and 10 ~dashed!,
respectively.
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T2~x!52E
0

`

t] tQ1
2~x,t !dt5E

0

`

Q1
2~x,t !dt, ~A2!

where we only calculate the MFPT fromx50 to x51/2,
because the MFPT fromx50 to x51/2 is far larger than tha
from x51/2 to x51.

From Eqs.~A1! and~A2!, one obtains the equations of th
MFPT:
.

-

R

n

$2g2E1]x1@D1~12l2!1D2~2E11lAD1 /D2!2#]x
2%T1

1gT21150,

$2g2E2]x1@D1~12l2!1D2~2E21lAD1 /D2!2#]x
2%T2

1gT11150. ~A3!
tt.

n,
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