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Escape over a fluctuating barrier with additive and multiplicative noise
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The mean first passage tinlFPT) over the fluctuating potential barrier is investigated in the presence of
additive and multiplicative noises. It is shown that the MFPT over the fluctuating potential barrier displays a
resonant activatiofRA). The effect of the additive and multiplicative noises and the correlation between them
on the RA is that the additive and multiplicative noises can weaken the RA; but the correlation between them
can enhance it. The susceptibility of the RA to the multiplicative noise is far larger than that to the additive
one. In addition, we find that the transition rdie., the inverse of the MFPBTover the fluctuating potential
barrier can be suppressed by the positive correlation and show a minimum as the function of the noises’
strengths[S1063-651X%99)04912-(

PACS numbd(s): 05.40—a, 02.50--r, 82.20.Mj

I. INTRODUCTION from the one in Refs[11,12, etc., the multiplicative noise
which appeared in Ref$11,12), etc., is used to cause the
Recently the conventional problems of the escape over theonfluctuating potential barrier to fluctuate, while the multi-
fluctuating potential barrier have attracted a great deal oplicative noise in this paper is not used to do so.
attention[1-13]. It was shown that the mean first passage

time (M.FPT) of a particlg drive.n.by ad(_ji'give noises over a Il. MODEL AND ITS MASTER EQUATION
fluctuating potential barrier exhibits a minimum as a function
of the flipping rate of the fluctuating potential barrjér—12] We consider a model whose Langevin equatiofirisdi-

(or the transition rate of the dichotomous nojd4&]). This  mensionless forpn

phenomenon is called “resonant activation,” and was iden-

tified by Doering and Gadougl] and further studied by a _ 9 9

number of other authof2-13). X=— a—U(x,t)— &(t) (9—U(x,t)ﬂL 7(t), 1
Earlier studies of activation of MFPT over fluctuating po- X X

tentials were restricted to limiting cases, i.e., slpi4] or

fast[14,15 barrier fluctuations, or small fluctuation46]. ~ whereé(t) (the multiplicative noispand (t) (the additive

Owing to using approximate treatments in R¢fsi—16, the  noisg represent the Gaussian white noises. In general, we

resonant activation cannot be observed. Recently in Ref&xpress the influence of the internal fluctuation on the system

[1-13], the authors reported results concerning the escapas additive noise and the effect of the external environmental

time (i.e., MFPT) over a fluctuating potential in the absence fluctuation on the system as multiplicative noigg5—29.

of approximate treatments as in Refd4—-16. They re- Here we assume that the external environmental fluctuation

vealed the resonant activatioRA) of MFPT over the fluc- can influence the internal fluctuation. Because of the influ-

tuating potential barrier. ence of the external environmental fluctuation on the internal
However, all of the above work for the RA of the MFPT fluctuation, the additive and multiplicative noises are not in-

over a fluctuating potential barrier has concentrated on thdependentthere is correlation between thenThe statistical

case where the fluctuating potential barrier is driven by adproperties of £(t) and n(t) are (&(t))=(n(t))=0,

ditive noise. One unavoidably wants to ask the question, i.e{&(t)é(t"))=2D,8(t—t"), (n(t) »(t"))=2D,6(t—t"), and

if the fluctuating potential barrier is driven by additive and (£(t) 7(t'))=2AD1D,5(t—t') (—1<A<1).U(xt) isa

multiplicative noises simultaneously, how is the situation? Influctuating potential barrier which satisfies

addition, in recent years it has been discovered that in sys-

tems d_riven by both additive and multiplicative noises,_the U(x,t)=U(x)+u(x,t), )

two noises can be correlatédi7—19, and the correlation is

able to change the steady properties of the systems greatly . .

[20—26. Nevertheless, how the correlation between additiveé'€ré the potential at any fluctuates symmetrically around

and multiplicative noises alters the activation process is stilld (X). u(x,t) can take the values Au(x) and —Au(x). In

an interesting and unexposed problem. In this paper we wilfig- 1 we plotU(x,t) in the case of dimensionless form. We

study the escape tim@.e., MFPT) over the fluctuating po- se+e that the forc& = —gU(x,t)/dx now fluctuates between

tential barrier in the presence of additive and multiplicativeF1 = —Ei/a (E;=E+AE) and F;=-E,/a (E=E

noises(between which there is correlatiprHere it must be  —AE) on the interval(0,a), and betweerF; =E; /(1 a)

stressed that the multiplicative noise in this paper is differenandF; =E,/(1— «) on the interval ¢, 1). For convenience,
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FIG. 1. The fluctuating potential barriek(x,t) (dashed, which
has two configurations, i.elJ(x)+Au(x) (+configuration and
U(x)—Au(x) (—configuration. The flipping rate of the fluctuat-
ing potential barrier between the two configurationyisThe solid
line corresponds t&J(x).

below we takea=1/2. The flipping rate of the fluctuating
potential barrier isy. Note that we haveAu(0)=Au(1)
=0 andU(x,t)=U(x+1}t).

Going from the Langevin equatidi) to the master equa-
tions[23,25,30,31for the probability density distribution we
find

J ( Pi+(X,t) (Gr Y Pr(xlt))
alprxty) |y G/ IPT(xt)) &
where G/'=—y—F 0, +[D1(1—\?)+Dy(F;

+AyD;/Dy)?192 and G, =—y—F, 9,+[D1(1—1\?)
+D,(F; +1D1/D,)%]92. i=1 represents the system on
the interval(0,1/2 andi =2 represents the system @h2,1).
The quantitiesP " (x,t) and P~ (x,t) are the probabilities at
any timet to find the barrier at thet or — configuration,
respectively, and the particle at positisnWe start with the
particle at the bottomx=0). So the initial condition is
EizzlPi(x,O)z 4(x). The boundary conditions for the reflect-
ing (x=0) and absorbingx= 1/2) boundary, respectively,
are d,P;(x,t)|x=o=0 andP;(x,t)|y=1,=0.

IIl. MEAN FIRST PASSAGE TIME

The equations of MFPT for Eq$3) are (see the Appen-
dix)

{=y=2E10,+[D1(1-\?

+Dy(—2E;+A\D1/D,)?]02} T, + yT,+1=0,

{—y—2E,9,+[D1(1-\?)
+Dy(—2E,+A\D1/D5)?]32} T+ y T +1=0. (4)

Here the reflecting boundary condition dgT;(0)=0, and
the absorbing boundary condition §(1/2)=0 (i=1,2).

The MFPT for a particle over the fluctuating barrier that

starts at the bottomx=0) is T=32 ,T;(0). Taking 4,T;
=g (i=1,2), from Eq.(4) we can obtain

LR B O A N L
p S1 B A]_ Al A]_ Sy
T, | O 0 0 1 T,
S2 _7 0 Y 2B \s
A; Ay A
0
_l/Al
+ , 5
0 ©)
—1/A,

where A;=D;(1-\?)+D,(—2E;+\D;/D,)?, and A,
=D;(1—\?)+D,(—2E,+\\D,/D,)?.

A. Case ofE;+E,=0

In general, one cannot obtain the exact expression of the
MFPT. However, in the case where the midpoint of the bar-
rier fluctuates betweert E (that isE;+E,=0, andE;=
—E,=E) it is simple enough to summarize analytically.
Now the MFPT for a particle over a fluctuating potential
barrier is, explicitly,

Toel 2+ 250 2 Bz)hg [ 24 25— M) o)
=cC —ry——r c —Try——T c
1 ¥ 1 ¥ 1 2 y 2 ¥ 2 4
2E 2A, 1
+t—Cgt——— — (6)
Y AE2+ y(Aj+A,) Y
where ri,=[2EA,—2EA;

EV(EA+EA) + yAIA (AL +A)I(AIA,),  c=(koks
—kgks)/(kik;—kok1), co=(—kici—kg)/ky, C3=—cCqry
—Caly, C4= —C18XP(1) —CreXp(r) —C3— Y[ —4E?— YA
+A)],  with  k;=(2Er;/y—Air2/y)ry, ky=(2Er,y
— A3l y)r,, ke=4E/[ —4E%— y(A;+A,)], k;=
—2Er,/y+(2Er, /y—Air2ly)expty), kh=—2Er,/y
+(2Er,/y—Aqrdly)exp,), and ki=4E/[ —4E?— y(A,
+A)]—2A1 /[ —4E2— y(AL+Ay)]—1/y.

B. Case ofE;+E,#0

When E;+E,#0 we cannot analytically get the exact
expression of the MFPT. Below we give the derivation of the
expression of the MFPT for numerical simulation. By nu-
merical simulation and analysis we can find that witen
+E,#0 the matrix of the homogeneous part abdutand
s; (i=1,2) in Eq. (5 has three nonzero real independent
eigenvalues and a zero eigenvalue. The general solution of
Eq. (5 (E;+E,#0) are s;=37_ Alexpx)+AD+ADx
and T;==7_;Bexp(x)+BY+BYx, wherei=1,2, \; (]
=1,2,3 are the above-mentioned nonzero eigenvalues. Sub-
stituting s; and T; into ¢,Ti=s; we can obtain B]-(')
=AM, AD=0, andB{’=A{’. So we have

3
si= 2>, Alexp(n;x)+AY),
=1

@)
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3 Al _ _ values of the correlation between the additive and multipli-
Ti=2>, —expn;x)+BY +APx. cative noises. We find that whéh + E,# 0, the escape rate
=1 (i.e., the reciprocal value of the MFP®ver the fluctuating
_ . , . potential barrier can be suppressed by the positive correla-
Substituting Eq/(7) into Eq. (5) and using the companng-  tion and show a minimum as the function of the two noises’
coefficient method, we obtaiA{’=2/(E;+E,), BY=B{”  strengths. This phenomenon has been reported by Madureira,
+F;, and A=kPAM (i=1,2, andj=1,2,3 with F;  Hanggi, and Wio[32], and Hai-xiang Fu, Li Cao, and Da-jin
=0, F,=(E +3E,)/y(E;+Ey), kiP=1, k{®=1  wu[33]. They named this phenomenon “giant suppression
+2E\ /'y—Al)\J-Z/'y. Substituting Eq(7) into the boundary  of the activation rate”(G9). In Figs. 4a) and 4b) we plot
conditions T;(1/2)=0 and s;(0)=0 [note A{’=2/(E, the In of the MFPT versus the additive noise strength in the
+E,), BY=BP+F;, andAJ(‘)sz(i)Aj(l)], we can obtain a case ofE;+E,=0 andE;+E,# 0, respectively. Figure(d)
shows that wherke; + E,=0 the MFPT versus the additive

linear algebraic system fo&("™ (j=1,2,3 andB{". From . . .
the linear algebraic equations of this algebraic system we ca@Olse strength is monotonodso GS exists and the MFPT

deriveA{") andB{? . The MFPT for a particle over the fluc- ecorlrlgs larger and Iarzger Wr':h |rr11creasmg the vafllue of the
tuating barrier is correlation. Figure &) shows that the MFPT curve for posi-

tive correlation exhibits a peak valyee., GS existg while
. cures for noncorrelation and negative correlation do not, and
S kJ(I) : the larger the correlation strength is, the higher the peak
Ti(0)= AW +2BM+ > Fi. " >
(0) .21 ,Zl A 4 .21 - ® becomes. Now the positive correlation becomes more sup-
pressive on the activation as the correlation grows, which is
exactly the main conclusion of Ref82,33. This is because
IV. CONCLUSION AND DISCUSSION when the correlation is positive the instantaneous barrier can
If we do not consider the multiplicative noise, E¢)  be lifted up (the negative correlation case is just the con-

becomes the model studied by Doering and Gadalisand  trary. . _

by Bier and Astumiai2]. Doering, Gadoua, Astumian, and ~ Below we consider the case whené(t)d,U(x,t) in Eg.
Bier have identified the RA of the MFPT for a particle over (1) is — &(t) d,U(x,t), in which U(x,t) is a fluctuating bar-
afluptL_Jatir_wg pote_ntial barrier for E¢l) ir_l the absence of_the rier with the flipping ratey. —a,U(x,t) takes the values
multiplicative noise. Fc_)r the stochastic moda), we will —E, and—E, on the interval0,1/2, andE, andE, on the
ask th.e following questlons. Is there_the RA_ of the MFP_T forinterval (1/2,1. Then Eq.(1) becomes

a particle over the fluctuating potential barrier? If there is the

RA, how do the multiplicative noise and the correlation be- ) _

tween the additive and multiplicative noises affect it? In or- X=—dxU(X,t) — &(t) axU(x,t) + n(t). (9)
der to settle the two questions, we plot Figs. 2 and 3 accord-

ing to Egs.(6) and(8). In Figs. 2 and 3, the In of the MFPT

he In of the flippi f the fl i ial ~ - -
versus the In of the flipping rate of the fluctuating potentia of 5= 5, B4~ E, andE,—E,. Further study shows that the

barrier is plotted where;+E,=0 andE;+E,#0, respec- tochasti ; ith stochastic diff ial "
tively. From these figures, one can find that there is a RA foprochastic system with stochastic difrerentia equa}m) as
the same phenomenon as shown in Figs. 2, 3, dne&4(1)

the MFPT over the fluctuating potential barrier. A reason for ) ) " LT
this RA happening here is given below. The resonance ir1ihere is RA for MFPT;(2) the additive and multiplicative

. . : i ken the RA, but the correlation between them
Figs. 2 and 3 occurs when the crossing takes place with theo ~c> ¢an wea ’ S
fluctuation potential barrier most likely iE=min(E;,E>) can enhance the RAB) the susceptibility of the RA to the

configuration (i.e., the “down” configuration. Now the multiplicative noise is far larger than that to the additive one;
MFPT has a Iocai minimum for the fluctuation potential bar- (4) there is the G5 In ordgr to avoid unnecessary repetition
rier transition rate on the order of the inverse of the time'S do not present the figures that are ba3|cally_3|mllar to
required to cross the fluctuation barrier with the quctuationF'gS' 2, 3.’ and 4'.'” Re[lS], we study the escape time over
potential barrier irE=min(E,,E,) configuration. In Figs. 2 a fluciuating parrlerlln the_ presence of a dichotomous noise
and 3 we plot the corresponding points where the tranSiti0@QSSZg%aﬁriziﬂan%t%\?gSt%eltﬂljctsl:]aotm; tQ::ritgre dr:;i)?gyert
time equals the MFPT over the fluctuating barrier with thetWO RA’'s. One is the RA of the MEPT as a function of the

potential barrier inE=min(E,,E,) configuration. It is clear .~ . . : . )
that this accords with the above reason for the RA happenir;a:ppgAg r?tﬁ ogﬂtglsgluctu?tmg _pote?t;ell barrlgr_, the oth?rljls
in Figs. 2 and 3. Moreover, from these figures we can fin dice:hoto?notug noise isse:‘ol#nt?\gonmgdt@;a ttﬁgrzt'iznoﬁte t?let €
that (1) with increasing the noisegadditive noise and mul- RA for the MEPT ' the fluctuati ' tential b y
tiplicative noise strength, the RA becomes more and more or the _over the Tiuctuating potential barrier as a
function of the flipping ratey of the fluctuating potential

indistinct, i.e., the noises can weaken the RA) with in- : ;
crease of the correlation between the additive and multipliparr'eru(x’.t)’ but thgre IS not the RA for. the MFPT_ovgr
the fluctuating potential barrier as a function of the flipping

cative noises, the RA becomes more and more distinct, i.e.,~ _ ) oo o
the correlation can enhance the R®) the susceptibility of ~ ratey of the fluctuating barriet)(x,t). Here the flipping rate
the RA to the multiplicative noise is far larger than that to y of the fluctuating barriet (x,t) has little influence on the
the additive one. MFPT over the fluctuating potential barriesee Fig. 3. In

In addition, we should investigate the activation of theFig. 5 we plot the In of the MFPT versus the In of the flip-
MFPT as the function of the noises’ strength for differentping rate y of the fluctuating potential barrier foE;=5,

Itis clear that Eq(1) is a special case for E¢Q) in the case
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FIG. 2. The In of the MFPT versus the In of the flipping rate
of the fluctuating potential barrier whel;+E,=0. (a) Corre-
sponds to the In of the MFPT versus the Imofor different values
of the additive noise strengtb, (D;=1, 3 and 3, E;=—E,
=4, D,=0, and\=0; (b) corresponds to that for different values
of the multiplicative noise strengt®, (D,=0, 0.01, and 0.06
E,=—-E,=4,D;=1, and\ =0; (c) corresponds to that for differ-
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FIG. 3. The In of the MFPT versus the In of the flipping rate
of the fluctuating potential barrier whele;+E,#0. (a) Corre-
sponds to the In of the MFPT versus the Injofor different values
of the additive noise strength, (D=1, 1.5, and 2 E;=5, E,
=7,D,=0, and\=0; (b) corresponds to that for different values
of the multiplicative noise strength, (D,=0, 0.002, and 0.004,
respectively, E;=5, E,=7, D;=1, and\=0; (c) corresponds to

ent values\ of the correlation between the additive and multiplica- that for different values\ of the correlation between the additive

tive noises £ =-0.9, 0, 0.1, and 0)5E,=—-E,=4, D,=1, and
D,=0.01. The marked point&l), (2), (3), and(4) are the corre-

and multiplicative noisesN=-0.5, 0, 0.2, and 0)5E;=5, E,
=7, D;=1, andD,=0.001. The marked pointd), (2), (3), and

sponding points where the transition time equals the MFPT over thé4) are the corresponding points where the transition time equals the
fluctuating barrier with the fluctuating potential barrier in the MFPT over the fluctuating barrier with the fluctuating potential bar-
“down” configuration. In (c), a dashed line is plotted for the case rier in the “down” configuration.(c) A dashed line is plotted for

wheny' (i.e., 1IT) equalsy.

E,=7,E;=—-E,=1,D,=0, andD,=1. The solid line cor-
reponds toy=1000, and the dashed line o= 10.

the case when/’ (i.e., 1IT) equalsy.

chastic resonance, we know that the response of a nonlinear
stochastic system to an inputting signal will be enhanced by

The relation of our work to the phenomenon of stochastidhe presence of noise and maximized for certain value of the
resonance should be considered. For the phenomenon of staeise’s strength. When the frequency of the inputting signal
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3 10

InT
InT

35 FIG. 5. The In of the MFPT versus the In of the flipping rate of
the fluctuating potential barrier for mod@). E;=5, E,=7, E;=
-E,=1, D,;=0, andD,=1. y=1000 (solid and 10 (dashed
respectively.

the MFPT for a particle over the fluctuating potential barrier
[in the dimensionless fornk;,~5 (see the Figs. 1, 2, and 3 in
the papex], we only calculate the MFPT from=0 to x
=1/2, which is because the MFPT fror=0 to x=1/2 is
far larger than that fronx=1/2 to x=1. In this paper we
believe that the particle moves from left to right. When the
particle moves from right to left, since we take=1/2, the
MFPT over the fluctuating potential barrier is similar to the
L L one when the particle moves from left to rigkithis means

0 1 2 3 4 5 6 7 8 that the MFPT over the fluctuating potential barrier is sym-
metric with response to the direction of barrier crossing.

InT

FIG. 4. The In of the MFPT versus the additive noise strength ACKNOWLEDGMENTS
for different values ofA (A=-0.9, 0, 0.5, and 0)9when E;
+E,=0 for E;=—E,=4, D,=0.01, andy=0.1[(a)], and when
E,+E,#0 for E;=5, E,=7, D,=0.01, andy=10[(b)].
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is equal to the intrinsic frequency of the original stochasticun'verSIty Faculty Research Grant.

system, a phenomenon of resonance will appear. In our pa-

per, the RA and the GS have both the phenomenon of reso- APPENDIX
nance. First, let us analyze the phenomenon of resonance _ '
appearing in the RA. For small valuesof the flipping rate The backward master equation for mast@ris [30,31]

of the fluctuating potential barrier, a destructive influence on

the asymmetry of the system will be played, so the mj1/

—Iny response curve will have positive slope. For lasgea g [ Qi (x.t)
central role will be played in producing cohorent motion r Q- (1) =
with increases a¥ increases, then the In(ly—Iny curve P
goes down. Thus, finally we can obtain a peaked [ff1/
—Iny curve, at the peak of which a phenomenon of resoyynere G = —y+F o, +[D1(1-N\2)+Dy(F;
nance will happen. As for the phenomenon of resonance ap- |, ——=2-.2 —~ - 2
pearing in the GS, the same analysis can be made as the ond* Dl_/DZ) 19 an 5 Gi =—v*F IxF[D1(1717)

in the RA. The intrinsic frequency of the stochastic system’ P2(Fi #AVD1/D3)"]d% . i=1 represents the system on

studied by us isy’ =1/T in which T is the MFPT over the the intervaI(O,;/Z) an_di =2 represents the system @h2,1).
fluctuating potential barrier. When' is equal to the fre- The MFPT is defined a30]

guency of the fluctuating potential barrier, i.e., the flipping

rate y, no resonance happens. In Fig&)2and 3c) we plot

the lines wheny’ is equal toy (the dashed lings T,(x)=— fwm Qf (x,t)dt= fo+(x t)dt
Finally, it needs to be explained that, when we calculate o b o “tTTY

[
y G,

( P.F(x,t)

Pi (x,t) ) (AD
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To(x)= J:tatQ;(x.t>dt= j:an.t)dt. (A2)

where we only calculate the MFPT from=0 to x=1/2,
because the MFPT from=0 tox=1/2 is far larger than that
from x=1/2 tox=1.

From Eqgs(Al) and(A2), one obtains the equations of the
MFPT:

J. H. LI, B. HU, D. Y. XING, AND J. M. DONG
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{= Y= E10+[D1(1- A+ Dy(—E;+\\D1/D,)?]d2) T,

{=y—E2dx+[D1(1—-\?)+Dy(—E»+\{D1/D,)?]1d5} T,

+yT,+1=0. (A3)
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